Build a WhatsApp AI Agent with Flask and Zavu
Build a lightweight WhatsApp AI agent using Flask's simplicity and Zavu's managed AI Gateway. The best part? You don't need to manage any external AI API keys - Zavu gives you access to all top-tier AI models (GPT-4, Claude, Gemini, Mistral, and more) directly from your dashboard.
What We're Building
A Flask application that:- Receives incoming WhatsApp messages via webhooks
- Verifies webhook signatures for security
- Uses Zavu's managed AI agents for intelligent responses
- Automatically maintains conversation context
Prerequisites
- Python 3.9+
- A Zavu account with API credentials
- Basic Flask knowledge
Installation
Create a new project and install dependencies:
bashmkdir whatsapp-agent && cd whatsapp-agent python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install flask zavudev python-dotenv
Project Structure
textwhatsapp-agent/ ├── app/ │ ├── __init__.py │ ├── webhook.py │ └── services.py ├── .env ├── config.py └── run.py
Environment Configuration
Create a .env file:
bashZAVUDEV_API_KEY=your_zavu_api_key ZAVU_WEBHOOK_SECRET=your_webhook_secret
That's it! No OpenAI, Anthropic, or other AI provider keys needed.
Create config.py:
pythonimport os from dotenv import load_dotenv load_dotenv() class Config: ZAVUDEV_API_KEY = os.environ.get("ZAVUDEV_API_KEY") ZAVU_WEBHOOK_SECRET = os.environ.get("ZAVU_WEBHOOK_SECRET")
How Zavu AI Gateway Works
Zavu provides a unified AI Gateway that gives you access to all top-tier AI models without managing individual API keys:
- GPT-4o, GPT-4o-mini - OpenAI's latest models
- Claude 3.5 Sonnet, Claude 3 Opus - Anthropic's models
- Gemini Pro - Google's AI models
- Mistral Large - Mistral AI's models
Create a Managed AI Agent
The easiest way to add AI capabilities is through Zavu's managed agents. You have two options:
Option 1: Via Zavu Dashboard
Create an agent for your sender directly in the Zavu Dashboard:
With the zavu provider, all AI processing is handled by Zavu's managed gateway. Your agent will automatically respond to incoming WhatsApp messages without any additional code!
Option 2: Via Python SDK
You can also create and configure AI agents programmatically using the zavudev SDK. Add these helper functions to app/services.py:
pythonimport os from zavudev import Zavudev zavu_client = Zavudev(api_key=os.environ.get("ZAVUDEV_API_KEY")) def create_ai_agent(sender_id: str, name: str, system_prompt: str, model: str = "gpt-4o-mini") -> dict: """Create an AI agent for a sender using Zavu's AI Gateway.""" response = zavu_client.senders.agent.create( sender_id=sender_id, name=name, provider="zavu", # Use Zavu's AI Gateway (no external API keys needed) model=model, system_prompt=system_prompt, context_window_messages=10, # Include last 10 messages for context include_contact_metadata=True, # Include contact info in context enabled=True ) return response.agent def get_agent_stats(sender_id: str) -> dict: """Get statistics for an AI agent.""" response = zavu_client.senders.agent.stats(sender_id) return response def list_agent_executions(sender_id: str, limit: int = 50) -> list: """List recent agent executions.""" response = zavu_client.senders.agent.executions.list( sender_id=sender_id, limit=limit ) return response.items
Now you can create an agent from Flask code:
Note: When usingpython# Example: Create an agent from app startup or view from .services import create_ai_agent agent = create_ai_agent( sender_id="sender_abc123", name="Customer Support Bot", model="gpt-4o-mini", system_prompt="""You are a helpful customer support assistant for Zavu. Rules: - Be friendly and concise - Help with WhatsApp, SMS, and email messaging questions - If unsure, offer to connect with a human agent - Respond in the same language as the customer""" ) print(f"Agent created: {agent['id']}")
provider="zavu", Zavu's AI Gateway handles all AI model access. No external API keys needed!Available AI Models
When creating an agent, you can choose from these models:
| Provider | Models |
|---|
| OpenAI | gpt-4o, gpt-4o-mini, gpt-4-turbo |
|---|---|
| Anthropic | claude-3-5-sonnet, claude-3-opus, claude-3-haiku |
| gemini-pro, gemini-1.5-pro | |
| Mistral | mistral-large, mistral-medium |
Create the Services Layer
Create app/services.py:
pythonimport os import hmac import hashlib from zavudev import Zavudev zavu_client = Zavudev(api_key=os.environ.get("ZAVUDEV_API_KEY")) def verify_signature(payload: bytes, signature: str) -> bool: """Verify webhook signature from Zavu.""" secret = os.environ.get("ZAVU_WEBHOOK_SECRET", "") if not signature or not secret: return False expected = hmac.new( secret.encode("utf-8"), payload, hashlib.sha256 ).hexdigest() return hmac.compare_digest(f"sha256={expected}", signature) def send_whatsapp_message(to: str, text: str) -> dict: """Send a WhatsApp message using Zavu.""" response = zavu_client.messages.send( to=to, text=text, channel="whatsapp" ) return response.message
Create the Webhook Blueprint
Create app/webhook.py:
pythonimport logging from flask import Blueprint, request, jsonify from .services import verify_signature, send_whatsapp_message webhook_bp = Blueprint("webhook", __name__) logger = logging.getLogger(__name__) @webhook_bp.route("/webhook", methods=["POST"]) def handle_webhook(): """Handle incoming WhatsApp messages from Zavu.""" signature = request.headers.get("X-Zavu-Signature", "") if not verify_signature(request.data, signature): logger.warning("Invalid webhook signature") return "", 401 try: payload = request.get_json() except Exception: return jsonify({"error": "Invalid JSON"}), 400 event_type = payload.get("type") if event_type == "message.inbound": process_inbound_message(payload) return jsonify({"status": "ok"}) def process_inbound_message(payload: dict): """Process incoming message - AI agent handles response automatically.""" message = payload.get("data", {}) message_type = message.get("messageType") if message_type != "text": logger.info(f"Ignoring non-text message: {message_type}") return sender = message.get("from") text = message.get("text", "") if not sender or not text: return logger.info(f"Received from {sender}: {text}") # With a managed AI agent configured, Zavu automatically handles the AI response # The webhook is primarily for logging or custom business logic # Example: Escalate to human on specific keyword if text.lower() == "human": send_whatsapp_message( to=sender, text="Connecting you with a human agent..." )
Application Factory
Create app/__init__.py:
pythonimport logging from flask import Flask from config import Config def create_app(config_class=Config): app = Flask(__name__) app.config.from_object(config_class) logging.basicConfig(level=logging.INFO) from .webhook import webhook_bp app.register_blueprint(webhook_bp, url_prefix="/api") @app.route("/health") def health_check(): return {"status": "healthy"} return app
Run Script
Create run.py:
pythonfrom app import create_app app = create_app() if __name__ == "__main__": app.run(host="0.0.0.0", port=8000, debug=True)
With a managed AI agent configured, Zavu automatically handles the AI response. The webhook is primarily for logging or custom business logic.
Run the Application
bashpython run.py
Or with Gunicorn for production:
bashpip install gunicorn gunicorn -w 4 -b 0.0.0.0:8000 "app:create_app()"
Configure Webhook
https://yourdomain.com/api/webhook - Enable: message.inbound - Copy the webhook secret to your .envLocal Development with ngrok
bashngrok http 8000
Use the HTTPS URL from ngrok in your Zavu webhook settings.
Managed Agent Features
Zavu's AI agents come with powerful built-in features:
Knowledge Bases
Create RAG-powered responses by uploading documents to give your agent domain-specific knowledge.
#### Via Dashboard
#### Via Python SDK
pythondef create_knowledge_base(sender_id: str, name: str, description: str = None) -> dict: """Create a new knowledge base for an agent.""" response = zavu_client.senders.agent.knowledge_bases.create( sender_id=sender_id, name=name, description=description ) return response.knowledge_base def add_document_to_kb(sender_id: str, kb_id: str, title: str, content: str) -> dict: """Add a document to a knowledge base.""" response = zavu_client.senders.agent.knowledge_bases.documents.create( sender_id=sender_id, kb_id=kb_id, title=title, content=content ) return response.document # Example usage kb = create_knowledge_base( sender_id="sender_abc123", name="Product FAQ", description="Frequently asked questions about our products" ) add_document_to_kb( sender_id="sender_abc123", kb_id=kb['id'], title="Return Policy", content="Our return policy allows returns within 30 days of purchase." )
Custom Tools
Connect external APIs to extend your agent's capabilities by creating tools that the AI can call.
#### Via Dashboard
#### Via Python SDK
pythondef create_tool( sender_id: str, name: str, description: str, webhook_url: str, parameters: dict, webhook_secret: str = None ) -> dict: """Create a tool for an agent.""" response = zavu_client.senders.agent.tools.create( sender_id=sender_id, name=name, description=description, webhook_url=webhook_url, webhook_secret=webhook_secret, parameters=parameters ) return response.tool # Example: Create a tool to check order status tool = create_tool( sender_id="sender_abc123", name="get_order_status", description="Get the current status of a customer order", webhook_url="https://yourdomain.com/api/tools/order-status", webhook_secret="your_tool_webhook_secret", parameters={ "type": "object", "properties": { "order_id": { "type": "string", "description": "The order ID to look up" } }, "required": ["order_id"] } )
Then create an endpoint to handle tool invocations:
python@webhook_bp.route("/tools/order-status", methods=["POST"]) def handle_order_tool(): """Handle tool calls from the AI agent.""" import hmac import hashlib # Verify tool webhook signature signature = request.headers.get('X-Zavu-Tool-Signature', '') secret = os.environ.get('ZAVU_TOOL_WEBHOOK_SECRET', '') if signature and secret: expected = hmac.new( secret.encode('utf-8'), request.data, hashlib.sha256 ).hexdigest() if not hmac.compare_digest(f"sha256={expected}", signature): return "", 401 payload = request.get_json() order_id = payload.get('order_id') # Call your internal API/service order_status = get_order_from_database(order_id) return jsonify({ "success": True, "data": { "order_id": order_id, "status": order_status.status, "estimated_delivery": order_status.delivery_date } })
Now when a customer asks "Where's my order ORD-12345?", the AI will automatically call your tool with the order ID and provide the response.
Conversation Flows
Build guided conversation paths for specific workflows through the dashboard flow builder.
Analytics
Track token usage, costs, and performance metrics directly in your Zavu dashboard under the Analytics section.
Using Your Own AI Credentials (Optional)
If you prefer to use your own AI provider credentials for billing purposes, you can configure them in your Zavu dashboard:
provider: "openai" (or your preferred provider) instead of provider: "zavu"This gives you full control over billing while still benefiting from Zavu's unified API and conversation management.
Custom Webhook Logic (Advanced)
If you need custom processing alongside the AI agent, you can add logic in your webhook:
python@webhook_bp.route("/webhook", methods=["POST"]) def handle_webhook(): """Handle incoming WhatsApp messages from Zavu.""" signature = request.headers.get("X-Zavu-Signature", "") if not verify_signature(request.data, signature): return "", 401 try: payload = request.get_json() except Exception: return jsonify({"error": "Invalid JSON"}), 400 if payload.get("type") == "message.inbound": message = payload.get("data", {}) sender = message.get("from") text = message.get("text", "") logger.info(f"Message from {sender}: {text}") if text and text.lower() == 'human': send_whatsapp_message( to=sender, text="Connecting you with a human agent..." ) return jsonify({"status": "ok"})
Next Steps
- Explore the AI Agents dashboard to monitor conversations
- Add knowledge bases for domain-specific responses
- Create custom tools to integrate with your backend systems
- Build conversation flows for specific use cases
- Add support for media messages (images, documents)